Exercises

PW 12-13. HMM & POS TAGGING.
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Find one tagging error in each of the following sentences that are tagged with
the Penn Treebank tagset:

1. I/PRP need/VBP a/DT flight/NN from/IN Atlanta/NN

2. Does/VBZ this/DT flight/NN serve/VB dinner/NNS

3. I/PRP have/VB a/DT friend/NN living/VBG in/IN Denver/NNP

4. Can/VBP you/PRP list/'VB the/DT nonstop/JJ afternoon/NN flights/NNS

Use the Penn Treebank tagset to tag each word in the following sentences from
Damon Runyon's short stories. You may ignore punctuation. Some of these are
quite difficult; do your best.

1. It is a nice night.

2. This crap game is over a garage in Fifty-second Street. ..

3. ...Nobody ever takes the newspapers she sells ...

4. He is atall, skinny guy with a long, sad, mean-looking kisser, and a mourn-
ful voice.

5. ...Iam sitting in Mindy’s restaurant putting on the gefillte fish, which is a
dish I am very fond of, ...

6. When a guy and a doll get to taking peeks back and forth at each other, why
there you are indeed.

Now compare your tags from the previous exercise with one or two friend’s
answers. On which words did you disagree the most? Why?

Now tag the sentences in Exercise 5.2; use the more detailed Brown tagset in
Fig. 5.7.

Implement the TBL algorithm in Fig. 5.21. Create a small number of templates
and train the tagger on any POS-tagged training set you can find.

Implement the “most likely tag” baseline. Find a POS-tagged training set, and
use it to compute for each word the tag that maximizes p(r|w). You will need
to implement a simple tokenizer to deal with sentence boundaries. Start by as-
suming that all unknown words are NN and compute your error rate on known
and unknown words. Now write at least five rules to do a better job of tagging
unknown words, and show the difference in error rates.

Recall that the Church (1988) tagger is not an HMM tagger since it incorporates
the probability of the tag given the word:

P(tag|word) # P(tag|previous n tags) (5.59)

rather than using the likelihood of the word given the tag, as an HMM tagger
does:
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P(word|tag) = P(tag|previous n tags) (5.60)

Interestingly, this use of a kind of “reverse likelihood™ has proven to be useful
in the modern log-linear approach to machine translation (see page 903). As a
gedanken-experiment, construct a sentence, a set of tag transition probabilities,
and a set of lexical tag probabilities that demonstrate a way in which the HMM
tagger can produce a better answer than the Church tagger, and create another
example in which the Church tagger is better.

Build a bigram HMM tagger. You will need a part-of-speech-tagged corpus.
First split the corpus into a training set and test set. From the labeled training set,
train the transition and observation probabilities of the HMM tagger directly on
the hand-tagged data. Then implement the Viterbi algorithm from this chapter
and Chapter 6 so that you can decode (label) an arbitrary test sentence. Now run
your algorithm on the test set. Report its error rate and compare its performance
to the most frequent tag baseline.

Do an error analysis of your tagger. Build a confusion matrix and investigate the
most frequent errors. Propose some features for improving the performance of
your tagger on these errors.

Compute a bigram grammar on a large corpus and re-estimate the spelling cor-
rection probabilities shown in Fig. 5.25 given the correct sequence ... was called
a “stellar and versatile acress whose combination of sass and glamour has de-
fined her..."”. Does a bigram grammar prefer the correct word actress?

Read Norvig (2007) and implement one of the extensions he suggests to his
Python noisy channel spellchecker.



